Yazar
Dicle Dilan SALMAN
Uzm. Dyt., Bayetav Okulları İzmir (ORCID No: 0000-0002-6724-1488)
Özet
-
Beslenme, yaşamın en temel unsurlarından biridir. Dijitalleşme, son yıllarda hayatın birçok alanında olduğu gibi, halk sağlığının kritik bileşenleri olan beslenme, gıda ve tarım alanlarında da önemli etkiler yaratmaktadır. Bu çalışma, dijitalleşmenin beslenme alanındaki durumunu kapsamlı biçimde incelemeyi; yapay zeka, makine öğrenimi ve derin öğrenme gibi teknolojilerin beslenme bilimleri, tarım ve gıda sistemlerinde nasıl kullanıldığını, bu teknolojilerin rolünü ve beraberinde getirebileceği olası zorlukları ortaya koymayı amaçlamaktadır. Ayrıca, dijitalleşmenin halk sağlığı perspektifinden değerlendirilmesi hedeflenmekte; toplum beslenmesini iyileştirmeye yönelik başarılı uygulamalardan örnekler verilerek, politika geliştirme süreçlerine katkı sağlayacak öneriler sunulmaktadır.
Summary
-
Nutrition is one of the most fundamental components of life. In recent years, digitalization has had a significant impact not only in many areas of life but also in the critical fields of public health such as nutrition, food, and agriculture. This study aims to comprehensively examine the current state of digitalization in the field of nutrition; to explore how technologies such as artificial intelligence, machine learning, and deep learning are used in nutritional sciences, agriculture, and food systems; to identify their roles and the potential challenges they may pose. Additionally, the study seeks to evaluate digitalization from a public health perspective and presents examples of successful practices aimed at improving community nutrition, offering recommendations to support policy development.
Anahtar Sözcükler / Keywords
Kaynaklar / References
-
Abeltino, A., Riente, A., Bianchetti, G., Serantoni, C., De Spirito, M., Capezzone, S., Esposito, R., & Maulucci, G. (2025). Digital applications for diet monitoring, planning, and precision nutrition for citizens and professionals: A state of the art. Nutrition Reviews, 83(2), e574–e601. https://doi.org/10.1093/nutrit/nuae035 Abbar, S., Mejova, Y., & Weber, I. (2015). You Tweet What You Eat: Studying Food Consumption Through Twitter. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, Seoul, Republic of Korea: Association for Computing Machinery, s. 3197–3206. Allen, R. C. (2006). The British Industrial Revolution in Global Perspective: How Commerce Rather than Science Caused the Industrial Revolution and Modern Economic Growth. Mimeo: Oxford, UK. Ammerman, A., Washington, C., Jackson, B., ve ark. (2002). The Praise! Project: A Church-Based Nutrition Intervention Designed for Cultural Appropriateness, Sustainability, and Diffusion. Health Promotion Practice, 3, 286–301. Armand, T. P., Nfor, K. A., Kim, J.-I., & Kim, H.-C. (2024). Applications of artificial intelligence, machine learning, and deep learning in nutrition: A systematic review. Nutrients, 16(7), 1073. https://doi.org/10.3390/nu16071073 Arslain, K., Gustafson, C.R., & Rose, D.J. (2020). Point-of-Decision Prompts Increase Dietary Fiber Content of Consumers’ Food Choices in an Online Grocery Shopping Simulation. Nutrients, 12, 3487. https://doi.org/10.3390/nu12113487 Bezirgani, A., & Lachapelle, U. (2021). Online grocery shopping for the elderly in Quebec, Canada: The role of mobility impediments and past online shopping experience. Travel Behaviour and Society, 25, 133–143. https://doi.org/10.1016/j.tbs.2021.07.001 Bhalo Khabo Bhalo Thakbo web sitesi (t.y.). Erişim Tarihi: 7 Mayıs 2025, https://www.bhalokhabobhalothakbo.com/ Bryan, C.J., Yeager, D.S., Hinojosa, C.P., ve ark. (2016). Harnessing Adolescent Values to Motivate Healthier Eating. Proceedings of the National Academy of Sciences of the United States of America, 113, 10830–10835. Chataut, R., Joshi, R., & Bhattarai, P. (2023). Unleashing the power of IoT: A comprehensive review of IoT applications and future prospects in healthcare, agriculture, smart homes, smart cities, and Industry 4.0. Sensors (Basel, Switzerland), 23(16), 7194. https://doi.org/10.3390/s23167194 Chen, J.L., & Wilkosz, M.E. (2014). Efficacy of Technology-Based Interventions for Obesity Prevention in Adolescents: A Systematic Review. Adolescent Health, Medicine and Therapy, 5, 159–170. Conway, J. (2020). Online meal kit delivery services in the U.S.—Statistics & facts. Statista; New York, NY, USA. Çalışma ve Sosyal Güvenlik Bakanlığı. (2024). Ulusal İstihdam Stratejisi 2025–2028. Erişim Tarihi: 6 Mayıs 2025, https://www.csgb.gov.tr/Media/t0bomvck/ulusal-istihdam-stratejisi-2025-2028.pdf Design and Manufacturing News. (2017). Industry 4.0 and IoT Central to Manufacturing Transformation. http://www.bizcommunity.com/Article/196/399/162851.html Engineering News. (2017). Industry 4.0 and IoT: Transforming the Manufacturing Industry. http://www.engineeringnews.co.za/print-version/industry-40-and-iot-transforming-the-manufacturing-industry-2017-06-01 European Commission. (2017). Modernising and simplifying the CAP: Socio-economic challenges facing EU agriculture and rural areas. Brussels. Fernandez, M.A. & Raine, K.D. (2021). Digital food retail: Public health opportunities. Nutrients, 13(11), 3789. https://doi.org/10.3390/nu13113789 GAN (Global Africa Network). (2017). Industry 4.0 and IoT: Transforming the Manufacturing Industry. https://www.globalafricanetwork.com/2017/06/01/company-news/industry-4-0-and-iot-transforming-the-manufacturing-industry/ Gibson, V., Zhu, Y. G., Ge, R., & Wahlqvist, M. L. (2015). Preferred ecosystem characteristics: Their food and health relevance to China’s rapid urbanisation. Asia Pacific Journal of Clinical Nutrition, 24, 556–574. https://doi.org/10.6133/apjcn.2015.24.4.29 Grand View Research. (2021). mHealth apps market size, share & trends analysis report by type (fitness, medical), by region. https://www.grandviewresearch.com/industry-analysis/mhealth-app-market Granheim, S. I., Løvhaug, A. L., Terragni, L., Torheim, L. E., & Thurston, M. (2021). Mapping the digital food environment: A systematic scoping review. Obesity Reviews, e13356. https://doi.org/10.1111/obr.13356 Hansen, J., Sato, M., Hearty, P., Ruedy, R., Kelley, M., Masson-Delmotte, V., ve ark. (2016). Ice melt, sea level rise and superstorms: Evidence from paleoclimate data, climate modeling, and modern observations that 2°C global warming could be dangerous. Atmospheric Chemistry and Physics, 16, 3761-3812. https://doi.org/10.5194/acp-16-3761-2016 Harada, K., Masumoto, K., & Okada, S. (2021). Distance to supermarkets and dietary variety among Japanese older adults: Examining the moderating role of grocery delivery services. Public Health Nutrition, 24(14), 2077–2084. https://doi.org/10.1017/S1368980020002219 Hargreaves, D., ve ark. (2022). Strategies and Interventions for Healthy Adolescent Growth, Nutrition, and Development. The Lancet, 399(10320), 198–210. Holt-Giméenez, E., & Wang, Y. (2011). Reform or transformation? The pivotal role of food justice in the U.S. food movement. Race, Ethnicity and Multidisciplinary Global Contexts, 1, 83–102. Honda, M., & Nishi, H. (2021). Household nutrition analysis and food recommendation using purchase history. In 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE) (pp. 1–7). IEEE. Iheanacho, C. A., & Vincent, O. R. (2022). Classification and recommendation of food intake in West Africa for healthy diet using deep learning. In 2022 5th Information Technology for Education and Development (ITED) (pp. 1–6). IEEE. Jabs, J., & Devine, C. M. (2006). Time scarcity and food choices: An overview. Appetite, 47, 196–204. https://doi.org/10.1016/j.appet.2006.02.014 Janssen, H. G., Davies, I. G., Richardson, L. D., & Stevenson, L. (2018). Determinants of takeaway and fast food consumption: A narrative review. Nutrition Research Reviews, 31, 16–34. https://doi.org/10.1017/s0954422417000178 Kaur, R., Kumar, R., & Gupta, M. (2023). Deep neural network for food image classification and nutrient identification: A systematic review. Reviews in Endocrine and Metabolic Disorders, 24, 633–653. https://doi.org/10.1007/s11154-023-09771-3 Kanter, R., & Gittelsohn, J. (2020). Measuring food culture: A tool for public health practice. Current Obesity Reports, 9(4), 480–492. https://doi.org/10.1007/s13679-020-00414-w Kao, C.-K., & Liebovitz, D.M. (2017). Consumer mobile health apps: Current state, barriers, and future directions. PM&R, 9(5S), S106–S115. Krebs, P., & Duncan, D.T. (2015). Health app use among US mobile phone owners: A national survey. JMIR mHealth and uHealth, 3(4), e101. Kondratieva, N.B. (2021). EU Agricultural Digitalization Decalogue. Herald of the Russian Academy of Sciences, 91(6), 736–742. https://doi.org/10.1134/S1019331621060150 Larson, N., Nelson, M., Neumark-Sztainer, M., Story, M., & Hannan, P. (2009). Making time for meals: Meal structure and associations with dietary intake in young adults. Journal of the American Dietetic Association, 109, 72–79. https://doi.org/10.1016/j.jada.2008.10.017 Limketkai, B. N., Mauldin, K., Manitius, N., & others. (2021). The age of artificial intelligence: Use of digital technology in clinical nutrition. Current Surgery Reports, 9, 20. https://doi.org/10.1007/s40137-021-00297-3 Lu, Y., Stathopoulou, T., Vasiloglou, M.F., Pinault, L.F., Kiley, C., Spanakis, E.K., & Mougiakakou, S. (2020). goFOODTM: An artificial intelligence system for dietary assessment. Sensors, 20(15), 4283. https://doi.org/10.3390/s20154283 Mah, C. L., Luongo, G., Hasdell, R., Taylor, N. G. A., & Lo, B. K. (2019). A systematic review of the effect of retail food environment interventions on diet and health. Current Nutrition Reports, 8, 411–428. https://doi.org/10.1007/s13668-019-00295-z Marcu, I., ve ark. (2020). Arrowhead technology for digitalization and automation solution: Smart cities and smart agriculture. Sensors (Basel, Switzerland), 20(5), 1464. https://doi.org/10.3390/s20051464 Manski, S. (2016). Building the blockchain: The co-construction of a global commonwealth. 12th Annual California Graduate Student Conference, University of California, Irvine. Medin, A.C., Astrup, H., Kåsin, B.M., & Andersen, L.F. (2015). Evaluation of a Web-Based Food Record for Children. Journal of Medical Internet Research, 17, e273. Milkman, K.L., Rogers, T., & Bazerman, M.H. (2010). I’ll Have the Ice Cream Soon and the Vegetables Later. Marketing Letters, 21, 17–35. https://doi.org/10.1007/s11002-009-9087- Mills, S., White, M., Brown, H., Wrieden, W., Kwasnicka, D., Halligan, J., Robalino, S., & Adams, J. (2017). Health and social determinants and outcomes of home cooking: A systematic review of observational studies. Appetite, 111, 116–134. https://doi.org/10.1016/j.appet.2016.12.022 Moran, A. J., Khandpur, N., Polacsek, M., & Rimm, E. B. (2019). What factors influence ultra-processed food purchases and consumption in households with children? A comparison between participants and non-participants in the Supplemental Nutrition Assistance Program (SNAP). Appetite, 134, 1–8. https://doi.org/10.1016/j.appet.2018.12.009 Mueller, N., Gerber, J., & Johnston, M. (2012). Closing yield gaps through nutrient and water management. Nature, 490, 254–257. https://doi.org/10.1038/nature11420 Naumova, E.N. (2021). Public Health Inequalities, Structural Missingness, and Digital Revolution. Journal of Public Health Policy, 42(4), 531–535. https://doi.org/10.1057/s41271-021-00312-y Nomura, S., & Miyata, H. (2020). Digitization of the approach to food and nutrition respecting individual health values. Nutrition Reviews, 78(Suppl_3), 46–55. https://doi.org/10.1093/nutrit/nuz081 Norris, S. A., Frongillo, E. A., Black, M. M., ve ark. (2021). Nutrition in adolescent growth and development. The Lancet. https://doi.org/10.1016/S0140-6736(21)01590-7 Ormond, B.A., Spillman, B.C., & Waidmann, T.A. (2011). Potential national and state medical care savings from primary disease prevention. American Journal of Public Health, 101, 157–164. Partridge, S. R., ve ark. (2020). Junk food on demand: Nutritional quality of online food delivery in AU & NZ. Nutrients, 12, 3107. https://doi.org/10.3390/nu12103107 Placidi, P., Gasperini, L., Grassi, A., Cecconi, M., & Scorzoni, A. (2020). Characterization of low-cost capacitive soil moisture sensors. Sensors, 20, 3585. https://doi.org/10.3390/s20123585 Potemkina, O. (2020). European Union: Seasonal workers under COVID-19 pandemic. Science Analytical Herald IE RAS, 5, 45‒51. https://doi.org/10.15211/vestnikieran520204551 Project GAIA. (2022). http://www.thecarbonproject.com/Products/Gaia (Erişim: 17 Mayıs 2025 10). Rajeswari, S., Suthendran, K., & Rajakumar, K. (2017). A smart agricultural model by integrating IoT, mobile and cloud. In 2017 International Conference on Intelligent Computing and Control (I2C2) (pp. 1–5). Raheem, D., Shishaev, M., & Dikovitsky, V. (2019). Food system digitalization and nutrition security in the Barents region. Agriculture, 9(8), 168. https://doi.org/10.3390/agriculture9080168 Reardon, T., Swinnen, J., Vos, R., & Zilberman, D. (2021). Digital innovations in food systems. International Food Policy Research Institute. https://www.ifpri.org/blog/digital-innovations-accelerated-COVID-19-are-revolutionizing-food-systems-implications-un-food Renzaho, A.M., Halliday, J.A., Mellor, D., & Green, J. (2015). The Healthy Migrant Families Initiative. BMC Public Health, 15, 272. Romanello, M., Di Napoli, C., Drummond, P., ve ark. (2022). The 2022 report of the Lancet Countdown on health and climate change: Health at the mercy of fossil fuels. The Lancet, 400(10363), 1619–1654. https://doi.org/10.1016/S0140-6736(22)01540-9 Rotar, A. (2021). Online Food Delivery Report 2021. Statista Digital Media Outlook. Saleem, J., Hammoudeh, M., Raza, U., Adebisi, B., & Ande, R. (2018). IoT standardisation: Challenges and solutions. In 2nd International Conference on Future Networks and Distributed Systems (ICFNDS’18), Amman. Sauceda, A., Frederico, C., Pellechia, K., & Starin, D. (2016). Results of the AND Consumer Health Informatics Work Group’s 2015 survey. Journal of the Academy of Nutrition and Dietetics, 116(8), 1336–1338. Schwab, K. (2016). The Fourth Industrial Revolution. World Economic Forum: Geneva, Switzerland. Shi, J., Han, Q., Cao, Z., & Wang, Z. (2024). DeepTrayMeal: Dietary assessment for Chinese tray meals. Food Chemistry, 434, 137525. https://doi.org/10.1016/j.foodchem.2024.137525 Short, F. (2003). Domestic cooking skills—What are they? Journal of HEIA, 10, 13–22. Stephens, J., Miller, H., & Militello, L. (2020). Food delivery apps and negative health impacts. Frontiers in Nutrition, 7, 14. https://doi.org/10.3389/fnut.2020.00014 Struebi, P. (2016). How the Fourth Industrial Revolution Can Improve Food Supply. Huffington Post. https://www.huffpost.com/entry/how-the-fourth-industrial-revolution-can-radically-improve-our-food-supply-chain_b_9011556.html Theodore Armand, T. P., Nfor, K. A., Kim, J.-I., & Kim, H.-C. (2024). AI, ML, and DL in nutrition: A systematic review. Nutrients, 16(7), 1073. https://doi.org/10.3390/nu16071073 Trubek, A. B., Carabello, M., Morgan, C., & Lahne, J. (2017). Empowered to cook: The role of ‘food agency’. Appetite, 116, 297–305. https://doi.org/10.1016/j.appet.2017.05.017 Wahlqvist, M.L. (2016). Future Food. Asia Pacific Journal of Clinical Nutrition, 25(4), 706–715. https://doi.org/10.6133/apjcn.092016.01 White, M., Aguirre, E., Finegood, D.T., Holmes, C., Sacks, G., & Smith, R. (2020). Role of the commercial food system in diet promotion. BMJ, 368, m545. https://doi.org/10.1136/bmj.m545 Wickham, C.A., & Carbone, E.T. (2018). Technology in adolescent food literacy programs. Appetite, 125, 333–344. Wikipedia. (2025). Ekolojik sağlık. Erişim: 6 Mayıs 2025, https://en.wikipedia.org/wiki/Ecological_health Yuehong, Y.I.N., Zeng, Y., Chen, X., & Fan, Y. (2016). The internet of things in healthcare: An overview. Journal of Industrial Information Integration, 1, 3–13. https://doi.org/10.1016/j.jii.2016.01.002
Geliş Tarihi / Received Date
-
14.05.2025
Kabul Tarihi / Accepted Date
-
20.06.2025